Математика ЕГЭ
Русский язык ЕГЭ
Математика 5-7
Математика ОГЭ
Информатика
Физика
Обществознание
Кликните, чтобы открыть меню

6. Простейшие исполнители и алгоритмы

1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения

Арифметические исполнители

Задание 1 #11972

У исполнителя прибавлятор есть 2 команды:

1. Прибавить к числу 2

2. Прибавит к числу 1

Напишите для него программу ,состоящую из номеров команд, которая переводит число 4 в 11 за 4 команды.

Одним из оптимальных методов решения является написание программы шаг за шагом приближающей число к ответу. По началу выполняем команды увеличивающие число на наибольшую возможную величину, в данном случае при помощи первой команды. Так прибавляя трижды по 2 доходим до 10, после чего необходимо прибавить только единицу. В данном задании несколько вариантов правильных комбинаций команд т. к. их последовательность не имеет значения.

Ответ: 2221

Задание 2 #11973

У исполнителя прибавлятор-7 есть 2 команды:

1. Прибавить к числу 5;

2. Прибавить к числу 2;

Напишите для него программу, состоящую из номеров команд, которая переводит число 3 в 21 за 6 команд.

Одним из оптимальных методов решения является написание программы шаг за шагом приближающей число к ответу. По началу выполняем команды увеличивающие число на наибольшую возможную величину, в данном случае при помощи первой команды. Так доходим до 13 т. к. 13 последнее нечетное число меньшее 21 при прибавлении 5 каждым шагом. Далее добавляем недостающие 4 двойки до 21. В данном задании несколько вариантов правильных комбинаций команд т. к. их последовательность не имеет значения.

Ответ: 112222

Задание 3 #11974

У исполнителя №52 есть две команды:

1.Прибавить 5;

2.Умножить на 2;

Напишите для него программу, состоящую из номеров команд, которая переводит число 5 в 110 за 6 команд.

Одним из оптимальных методов решения является восстановление программы от обратного, то есть от 110 к 5. Первым шагом будет команда обратная 2-ой, деление на 2 т. к. она максимально уменьшает число. Далее используем команду обратную 1-ой, вычитаем 5, т. к. 55 не делится на 2. Следующим шагом опять делим на 2, чтобы уменьшить число на сколько это возможно. 25 не делится на 2, поэтому опять вычитаем 5. После чего делим на 2. Чтобы получить из 10 необходимое число, можно вычесть 5 или разделить на 2. Далее необходимо восстановить последовательность команд в обратном порядке. Ответ 221212 или 121212.

Ответ: 221212

Задание 4 #11975

У исполнителя №32 есть 2 команды

1. Умножить число на 3;

2. Прибавить к числу 2;

Напишите для него программу, состоящую из номеров команд, которая переводит число 4 в 122 за 6 команд.

Одним из оптимальных методов решения является восстановление программы от обратного, то есть от 122 к 4. Первым шагом будет команда обратная 2-ой,вычитание 2 т.к. 122 на 3 не делится. Далее используем команду обратную 1-ой деление на 3. Из получившихся 40 вычитаем 2 раза по два, после этого ещё делим дважды на 3, после чего получаем необходимое число. В ответ записываем последовательность команд в обратном порядке.

Ответ: 112212

Задание 5 #11976

У исполнителя №53 есть 2 команды

1. Умножить число на 5;

2. Прибавить к числу 3;

Напишите для него программу, состоящую из номеров команд, которая переводит число 4 в 121 за 5 команд.

Одним из оптимальных методов решения является восстановление программы от обратного, то есть от 121 к 4. Первым шагом будет команда обратная 2-ой,вычитание 3 т.к. 121 на 5 не делится. 118 так же не делится на 5, следовательно, вычитаем 3 ещё раз. К 115 уже можно применить операцию обратную 1-ой команде, деление на 5. 23 на 5 не делится, вычитаем 3 ещё раз. 20 делим на 5 и получаем искомое число. В ответ записываем последовательность команд в обратном порядке.

Ответ: 12122

Задание 6 #11977

У исполнителя №327 есть 3 команды

1. Прибавить к числу 3;

2. Возвести число в квадрат;

3. Умножить число на 7;

Напишите для него программу, состоящую из номеров команд, которая переводит число 1 в 808 за 6 команд.

Одним из оптимальных методов решения является восстановление программы от обратного, то есть от 808 к 1, применяя обратные команды. К 808 мы можем применить только команду обратную 1-ой и вычесть 3. 805 уже можно разделить на 7 и применить команду обратную 3-ей. К 115 можно применить только операцию обратную 1-ой. 112 делим на 7 командой обратной 3-ей. Из 16 извлекаем квадратный корень операцией обратной 2-ой. Последней операцией остается из 4 вычесть 3 командой обратной к 1-ой. В ответ записываем последовательность команд в обратном порядке.

Ответ: 123131

Задание 7 #11978

У исполнителя №3523 есть 4 команды

1. Умножить число на 3;

2.Умножить число на 5;

3.Прибавить к числу 2;

4.Возвести число в куб;

Напишите для него программу, состоящую из номеров команд, которая переводит число 2 в 602 за 5 команд.

Одним из оптимальных методов решения является восстановление программы от обратного, то есть от 602 к 2, применяя обратные команды. К 602 можно применить только команду обратную 3-ей. 600 делится на 5 и на 3, делим на 5 и на 3, командами обратными 2-ой и 1-ой. 40 можно ещё раз разделить на 5 командой обратной 2-ой. 8 это 2 в кубе, следовательно применяя к 8 команду обратную 4 получим искомое число. В ответ записываем последовательность команд в обратном порядке. Ответ 42123 или 41223 или 42213.

Ответ: 42123